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STABILITY OF A FILM FLOWING DOWN ALONG AN OSCILLATING 

SURFACE 

V. I. Baikov, A. T. Listrov, 
and Z. A. Shabunina 

UDC 532.516 

The linear approximation for a harmonically oscillating surface is used to ob- 
tain the condition of flow stability for a liquid film. 

The flow of films in heat and mass transfer devices is nearly always accompanied by 
wave phenomena at the gas--liquid boundary. The waves considerably affect the transfer pro- 
cesses, and, whenever possible, various adaptations are used which assist the formation of 
waves or turbulence of the liquid. For example, the vibration of a straight surface can, 
according to the experimental data [i], lead to an increase of the heat-transfer coefficient 
by 400%, in comparison with the usual gravitational flow. It is therefore of interest to 
determine the transition from the waveless regime of the flow to the laminar-wave regime, 
and then to the turbulent regime, i.e., it is necessary to establish the limits of stability 
of the particular flow regime in question. 

Let us assume that a film of viscous incompressible liquid flows down along a sloped 
surface which oscillates in its own plane with velocity Vocosw,T (Fig. i). The problem is 
described by the system of equations 

a~vl Or1 0~ pg cos 7; @Pd -- 0. (1) v ~ - 5 - §  
Ox2 OT Ox2 dxa 

In addition, we use the conditions of sticking at the wall, and the absence of tangen- 
tial stress at the free surface: 

dull 
Pd (0) = Patm; V'lx~=U = Vo costa, T; 0 x ~ z  x,=0= 0. (2) 

By s o l v i n g  the  sys t em of  e q u a t i o n s  (1) and (2 ) ,  we d e t e r m i n e  t h e  u n p e r t u r b e d  f low of  
the layer in the form 

1 1 
uo = ~ -  Be Fr -I (1 - -  yz) sin 7 q- - ~  exp (Aot) c h ( l + i )  By + 1 c h ( l - - i )  By 

ch (1 + i) {3 ~ exp (--  i(ot) ch (1 - -  i) {3 

p - -  g cos  7 + Pa 
Fr 

(3) 

or 

1 
Uo = - T R e F r - i ( 1 - - y i ) s i n y  + Acos(mt - - t~ ) .  

Here  Re = Vod/v  i s  t he  v i b r a t i o n a l  Reyno lds  number,  Fr = gd 
b e r ;  2~ 2 = wRe; 

(4) 

, vibrational Froud hum- 
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Fig. i. The flow pattern. 

A = sh 2 [~ q- cosl[ ~ J , 

amplitude of instantaneous velocity; and 

( 1 ch fig cos ~g sh ~ sin ~ __ sh ~g sin ~g ch ~ cos ~ ) 
t~ = arcsin . - f f  sh 2 ~ -k cos ~ ~ s - h 2  ~ -k cos 2 ~ ' 

phase shift of velocity pulsations in the liquid relative to the oscillations of the wall. 

We introduce the length 6 = (~/~,)i/2, which characterizes the oscillating flow. There- 
fore, we can have several possibilities: The quantity 6 can be small, large, or comparable 
to the thickness d of the flowing film. 

We consider the case 8<<d which corresponds to ~ >>i and is realized, e.g., for high 
frequencies of oscillations of the wall. It follows from Eq. (4) that the velocity pulsa- 
tions decay with increasing distance from the wall as A ~ exp(--B(l -- y)), and they will, 
therefore, be localized in a narrow near-wall region. Across most of the thickness, uo is 
parabolic. In the problem of stability of a flow with a dividing boundary, the instability 
mechanism is associated with the formation of surface waves generated by the perturbation of 
the free surface. It is therefore natural to assume that the near-wall velocity pulsations 
cannot interact with theperturbations of the free surface, and the stability conditions will 
be the same as in the absence of vibrations. We introduce 

Re~ - R e l s i n ?  - -  g p l d ~ s i n ~  , 

2Fr 3g 2 

and o b t a i n  [2] 

5 
Re~ < -~- ctg V. (5)  

We turn to the opposite case when 5>>d (~<<i) , which is realized for low frequencies of 
oscillation of the wall. The smallness of frequency indicates that the velocity varies slowly 
with time, and in Eq. (i) one can therefore neglect the derivative avl/0z. Consequently, the 
flow can be assumed stationary. It follows from Eq. (4) that in this regime the film flows 
down along the solid surface and oscillates with it as a whole, i.e., it moves with velocity 

uo = cos ~t  + ___1 Re Fr-~ (1 - -  g~) sin ~ (6) 
2 

at each moment of time. As for a stationary wall, the stability condition can be written in 
the form (5). 

Finally, we consider the case 8 ~ d, i.e. B ~ 1 or ~, ~ ~/d 2. Let us assume that at 
^ 

some moment of time the principal flow (3) suffers a small two-dimensional perturbation u = 
Uo + u'; v = v'; p = Po + P' We introduce the flow function by 

u ' =  O~ ; v ' =  _ O ,  

Og Ox 

and assume that 
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= r (g, 0 exp (lax); ~1 = ~1 (t) exp (i~x); 

P' = ~ (V, t) exp ( iax ) .  

(7) 

Here D is the geometry of the perturbed surface. By linearizing, in the usual fashion, the 
equations of motion and the continuity equation, and eliminating the pressure p, we obtain, 
by using dynamic and kinematic boundary conditions, the description of the perturbed flow of 
the liquid layer: 

@~ 092 . - - - ~  O/,,z 

+ i~Uo ( 82Cp@2 a2rP) - 82uQ ] j ' 

- -  ioxp (0, t) = io~lUo (0, t) + d----~ ; 

+ 

(8)  

(9)  

q0 = 0, 8~ - - 0  for U---- I; 
@ 

8~Uo 02gJ 
l I - - @ ~  @~2q9 = 0  for g =  0; 

8V 2 

- -  i~} Re B = i~ Re Fr - I  rl cos 7 - -  2~2 0___~ + _ _  
Oy 

_ ~2 &0 Re 02~ ie  Re uo 0--!--~ for 
av atav oF 

c~ 
893 

9=0. 

(io) 

Equation (8) is the analogue of the Orr--Sommerfeld equation for the nonstationary case. 
According to [3], we seek the solution of the system (8)-(10) in the form 

q~ (V, t) -- [ (9, t) exp (,[~t); rl (t) = N (t) exp (~t), ( l l )  

where f(y, t) and N(t) are periodic functions of time, and ~ is a complex number. 

First of all, we consider long-wavelength perturbations a ~ 1 since the short-wavelength 
perturbations are quenched by the surface tension. We represent all quantities in the form 
of series in terms of 

f = L + v.h ~- ~-f~ + . . .  ; N = No + ~N~ + ~A% + . . .  ; 

= ~o + ~ + ~.% + . . .  

We now consider the consecutive approximations in terms of a. In the first approximation, we 
ob ta in 

0% _ ~e S--t~ + j3o Re 02f---t-~ ; dN__~o + ~oNo = 0; 
OF ~ Or@ a 89 a dt 

fo = O; 8to 
@ 

1 83fo 82fo 

= 0  for y =  1; 

~o c)[~ - - 0  for u = O ;  
Re 093 dtO9 @ 

( exp (loot) exp (-- io~t) 
0 f0  V0ReFrlcos + i 2N0<h( +O _c @ 2  c h ( 1 - - i ) ~  

for g = 0. 

U s i n g  t h e  p e r i o d i c i t y  c o n d i t i o n s  f o r  t h e  f u n c t i o n s  No and fo  g i v e s  

}o = O; No = const = 1; 

[o = -~- Re Fr -1 sin y (1 - -  y)2 4- Real exp (iot) X 

I th(1 + i) x 1 ch (1 + i) ~V + 
L ch2( 1 + i ) ~  ch t l  ~- i)~ ch(1 + i)~ 

\ )=0 

sh(1-{- i )~9i}  " 

1415 



In the second approximation, 

dt 
- -  - -  iUo ( 0 ,  t )  = - -  i f o  ( 0 ,  t ) .  

Since gl is a number and N1(t) is a periodic function, we have 

13~ = - -  i R e  F r  -~ Sin 7; N~ (t) - -  
1 [ exp(iot) exp(---imt).. ] 

2o ~ chZ(.1 @i)[3 c h ~ ( 1 - - i ) ~  

and for fl we have the equation and boundary condition 

a~fo ~ a=uo'~ a~fo 

f1 = 0; Oft -- 0 for g ---- 1; 
0g 

Oauo . aT,. + ~ N~ = 0 for _t/= O; 
Og ~ 

Oh 
i Re Fr -1 cos ? + O~f~ i Re Uo -- -- 

Og ~ @ 

- -  R e  a2[~1 ~ l R e  0to_ = 0 for g = 0. 
atOg OF 

_ _  ; (12) 

The solution of equation (12) will be sought in the form 

fl ---- ~FI (g) exp (2io~t) @ vf 2 (g) exp (-- 2i(ot) + ~F 3 (g) 

We now turn to the following expansion in terms of a (the terms which are coefficients of 

a2): To determine ~2 from the equation 

(13) 

d:V.,_ ~ 2 - - O , N , - - i ( f t ( O ,  t) 4-N~uo(O, t)) (i4) 
dt 

under the condition that ~2 is a number and N2 is a periodic function, we only need to find 

the dependence ~3(y): 

w~ (y) = ,a~ ~ ~- ~.~y~ + ,z~y 4-. v~ + i Re jk~[6 ( r - 5 - J +  r '~,, 

i [ ch (1 -i-, i) ~3F ch (1 - -  i) {3g ] t -  

4132(ch2[~Tcos2, B) L c h ( 1 - - i ) f f  c h ( l + i ) [ 3  j 

i 
+ [(sh 213y q- i s}n 2j3g) th(1 + i)~3 - -  

1 6~ 2 (ch 2[J + cos 2~) 

i) 13]} Re sin ~; - -  (sh 2~g - -  i sin 2f3F) th (1 - -  ; k 2 F~- 

i Re ik 2 
~ cos t  -- Re; ~2 = ik2Re; 

6Fr 3 

3i Re (ch 213 sin 2~ @ sh 213 cos 213) 3 i Re ik 2 Re v- -- cos y; 
~73 = ~ (oh 213 + cos 2~) 2 2 2 Fr 

3 iRe  '[-~j sh 2B sin 2~ - -  ch 2~ sin 2~ - -  
~ = 415(ch213 + cos2~) 2 

j 1 iReFr_~cos?+O,7ik2Re" --sh2Fcos 2F ---~ 

2 Re 3 sin 2 ~ Re COS y ( t  5 ) 
~ ~ Re ~ (15) + - 15Fr z 3F r  ' 

We now obtain from Eq. (14) 
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- 0 5 - -  
'O  f # 

Fig. 2. The variation of 
the function S~(8) with in- 
creasing 8, 

where 

= sn 2[3 sin 2[3 -- 
4[3 (ch 2[3 + cos 213)~ 

- -  ch 2~ sin 2~ - -  sh 2~ cos 2B i " 
J 

The stability of flow is determined by  the sign of ~2: for Ba< 0 the flow is stable, 
and for B2 > 0 it is unstable or, in other words, the flow is stable if 

6 
3 Fr o~ (t3) @ -~- Ree sin "f - -  cos ? < 0. (16) 

In the opposite case, the flow is unstable and the perturbations increase exponentially. 

It is seen from Fig. 2 that ~-(~) differs considerably from zero only in a very narrow 
region of frequencies B ~ i; i.e., ~* ~ v/d2, where the vibrations of the wall are most fa- 
vorable for the loss of stability. When the vibrations are absent (Vo~ 0), Eqo (16) makes 
it possible to obtain the known result for the stationary layer [2]: The flow is unstable 

for Rec <~--cLg?. 

In the situation when the angle of inclination y = 0, i.e., the flow under the action 
of gravity is absent, we obtain the conditions for the stability of a horizontal layer [3]: 
Fr -I > 3F(8). For a vertical surface, y = 7/2, and the condition (16) takes the form 

5 
Re~<-- -- F r y  ([~). (17)  

2 

Hence, it is seen that on a stationary wall the motion is always stable. Since the function 
F(~) changes sign, for a vibrating surface the stable regime can exist for some values of am- 
plitudes and frequencies of oscillations. 

We consider the case of small-amplitude oscillations of the velocity of the wall (Fr << 
i). It then follows from Eq. (16), in view of the fact that function6~(B) is bounded, that, 

5 
independently of the frequency of oscillations, the condition Re c <-- cig ~ is satisfied. In 

6 

other words, the vibrations of the wall do not affect the stability of the film. 

The results obtained in the present work are confirmed indirectly by the experimental 
investigations [4], which studied the pattern of perturbations on the surface of a flowing 
film for an oscillatory spraying density. In our case, by going over to a coordinate system 

d 

fixed to the wall, and introducing the volume flow rate of the liquid Q =i uody, we obtain 
0 

a solution which describes the flow of the film along a stationary surface, but with a pul- 
sating flow rate. 
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NOTATION 

xl, x2, and x3 are the orthogonal Cartesian coordinates; vl, v2, v3, dimensional com- 
ponents of the velocity vector; d, thickness of the film; Vo, amplitude of the velocity of 
wall oscillations; x = xl/d, y = x2/d, z = x3/d, dimensionless Cartesian coordinates; Uo = 
vl/Vo, dimensionless velocity of unperturbed flow; Pd, dimensional pressure in the liquid; 
Patm, gas pressure at the free surface; Pa = Patm/P V~, dimensionless pressure of gas at the 
free surface; p, density; v, kinematic viscosity; T, time; t = rVo/d, dimensionless time; 
~,, frequency of oscillations of the wall; ~ = ~,d/Vo, dimensionless frequency; and ~, ~, 
p, components of the velocity vector and pressure in the perturbed flow. 
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NUMERICAL MODELING OF AN EXPLOSION PLASMA GENERATOR, 

TAKING INTO ACCOUNT RADIATIVE ENERGY TRANSPORT AND 

EVAPORATION OF THE WALLS 

G. S. Romanov and V. V. Urban UDC 533.6.011.8:535.2 

Using a generalized theoretical model, we study the effect of geometrical dimen- 
sions and a variety of physical processes on the operation of the explosion plasma 
generator. 

The present work is a continuation of the theoretical study [i, 2] of the explosion 
plasma generator developed by A. E. Voitenko (Fig. i). The principles of operation of this 
device were discussed in sufficient detail in [1-4]. This makes it possible to turn to the 
formulation of the problem of numerical modeling of the explosion plasma generator. 

In the course of operation of the generator, a detonation wave, by passing over the ex- 
plosives, accelerates a metal plate up to the velocity 5-6 km/sec [2-4]. The phase velocity 
of the point on the line of contact of the plate and segment will increase (since U~ = V/sin 
~) as the plate approaches the exit aperature and, from some moment of time, it will exceed 
the speed of sound Co in the metal plate and in the spherical segment. Therefore, the per- 
turbations from the contact line (metal deformations, the melt from the walls, etc.) will not 
propagate upwards along the flow, and affect the motion of the plate and of the gas. It is 
probable that this can explain the experimental facts that the plate remains flat during the 
motion inside the segment (this is seen on the x-ray pulsed picture shown in [5]). Under 
the action of the detonation wave, shock waves propagate and are reflected from the surface 
of the plate, and cause its expansion and compression. However, the amplitude of these os- 
cillations is small (it is smaller than the proper thickness of the plate), and is much 
smaller than the path length of the plate inside the segment. It is known [6] that a com- 
pressible plate gains velocity discontinuously, and on incompressible plate gains velocity 
in a smooth fashion. However, the difference of instantaneous velocities of motion is in 
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